Some Inequalities for Sums of Nonnegative Definite Matrices in Quaternions
نویسندگان
چکیده
The collection of all quaternions is denoted byH and is called the real quaternionic algebra. This algebra was first introduced by Hamilton in 1843 (see [5, 6]), and is often called the Hamilton quaternionic algebra. It is well known thatH is an associative division algebra over R. For any a= a0 + a1i+ a2 j + a3k ∈H, the conjugate of a = a0 + a1i + a2 j + a3k is defined to be a = a0 − a1i− a2 j− a3k, which satisfies a= a, a+ b= a+ b, ab = ba (2)
منابع مشابه
Some numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملDimensional Differences between Nonnegative Polynomials and Sums of Squares
We study dimensions of the faces of the cone of nonnegative polynomials and the cone of sums of squares; we show that there are dimensional differences between corresponding faces of these cones. These dimensional gaps occur in all cases where there exist nonnegative polynomials that are not sums of squares. As either the degree or the number of variables grows the gaps become very large, asymp...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005